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1 Introduction.

These exercise solutions refer to questions from the MIT OpenCourseWare course titled "Topics in Mathe-
matics with Applications in Finance". I chose the questions that I believed would be most beneficial to work
through/write up. Sections are labeled by the title of the Problem Set. This writeup and any mistakes/typos
in it are mine – feel free to contact me if you notice something to correct!
R
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2 Linear Algebra.

Problem A-1
a. True; the row-rank and column-rank of a matrix are always equal.

b. True; we’re transforming the basis vectors of B by the transformation A. All the basis vectors of AB
will be linear combinations of the columns of B, and so are bounded by rank(B).

c. True; for any rectangular matrix C(m× n), m 6= n, assume its left-inverse L and right-inverse R exist.
By necessity, L must be n×m (so that LC = In, the identity matrix of n dimensions) and R must be m× n
(so that CR = Im, the identity matrix of m dimensions). So just considering dimensions, L 6= R.

d. False; rectangular matrices can be full-rank but are never invertible.

e. False; for example,
[

1 1
1 1

]
is not invertible.

f. False; an eigenvalue of a matrix can be 0, in which case the matrix is not invertible.

g. False. By definition, A is diagonalizable if there exists a P such that P−1 AP = D is diagonal. Consider
that by the earlier equation, we also have A = PDP−1. If A is full-rank, we can recognize this as an
eigendecomposition of A, where P are the eigenvectors and D the corresponding eigenvalues.
However, there is no restriction on the values of the diagonal entries of D. Say some of those entries are 0.
Then this suggests that 0 is an eigenvalue of A, and therefore A is not invertible.

Problem B-1

Note that with the singular-value decomposition A = UΣVT (U and V orthogonal matrices, Σ rectangular-
diagonal), we have that

AAT = U(ΣΣT)UT , AT A = V(ΣTΣ)VT

where we recognize the above as the eigendecompositions of the symmetric matrices AAT and AT A.
Let us say A is n×m (so U is n×m, VT is m×m, and Σ is n×m).

a. True. Recall that rank(AB) ≤ min(rank(A), rank(B)). This is also valid for more than two matrices at
a time —at no point can a linear transformation spontaneously increase the span of a set of vectors. So

rank(UΣVT) = min(rank(U), rank(Σ), rank(VT))

= min(n, rank(Σ), m) (U and V are orthogonal and so have full rank.)
= rank(Σ) (A matrix’s rank must be smaller than its number of rows and columns.)

= rank(A) (UΣVT = A)

b. True. We mentioned before that U and VT correspond to the eigenvector matrices of AAT and AT A,
so they are immediately determined once A is chosen.
Let’s prove by contradiction. Suppose there existed a Σ′ 6= Σ such that UΣ′VT = A. Then U(Σ′−Σ)VT = 0.
But rank(Σ′ − Σ) > 0, so rank(U(Σ′ − Σ)VT > 0) while rank(0) = 0. But that means U(Σ′ − Σ)VT 6= 0. A
contradiction! So our supposition is incorrect; in fact, there is no other Σ′ 6= Σ that corresponds to A (aside
from permuting its rows/columns, which would involve permuting the rows and columns of U and VT).

c. False. In particular, if A is not symmetric, then U 6= V. (Is explanation valid?)

Quick lemma: for a matrix M, MMT and MT M are symmetric. Proof: Say that mj refers to the i’th
column vector of M. Then we can describe MMT = ∑i mimT

i as a sum of outer products. An outer product
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P = vvT is always symmetric Pij = vivj = vjvi = Pij, and the sum of symmetric matrices are symmetric
(you’re performing the same operations to each pair of "matched" entries). So MMT is symmetric (and
therefore so is (MMT)T = MT M).

Now for the actual proof of the claim. Let’s prove by contradiction. Suppose that A (n× n) is not sym-
metric and also U = V. We can always write out Σ = KKT (for a square Σ, the values of K would be
the square-roots of the entries of Σ.) Then A = UKKTUT = (UK)(UK)T . In general, MMT is symmetric
(see lemma above). So (UK)(UK)T = A is symmetric. But we said A is not symmetric. Contradiction! So
a part of our initial assumption is incorrect. In this case, we can resolve the contradiction by making U 6= V.

d. True. Now that we force A to be symmetric, we have that AAT = AT A, so they have the same
eigenvectors, so in fact we must have that U = V.

Problem B-3
We want to find for any symmetric positive (semi-)definite matrix A an orthonormal matrix U such that
UT AU = D for a diagonal matrix with non-negative entries D.(A being positive semi-definite implies
vT Av ≥ 0 ∀v 6= 0.)

Since A is symmetric, we can use singular-value decomposition to write A = UΣVT with U = V being
orthogonal. Multiplying both sides on the left and on the right by U−1 (which, because U is orthogonal,
has the relation U−1 = UT) gives us Σ = UT AU.

Note that since A is symmetric, we can read the above as the eigendecomposition of A: A = UΛUT and
UT AU = Λ. So by choosing the unit-norm eigenvectors of A to form U, we can get the diagonal matrix
of eigenvalues Λ. The eigenvalues of A must be non-negative; if any of them weren’t, then we could take
its corresponding eigenvector as vi and have vT

i Avi < 0, which violates the assumption that A is positive
semi-definite. So Λ = Σ is our diagonal matrix with non-negative entries D.

Problem B-4
With v1, · · · , vn ∈ Rm forming the columns of A (an m × n matrix), and w ∈ Rm, we want x ∈ Rn that
minimizes ‖L‖ with L = Ax− w.

a. If A were diagonal, we can minimize L pretty simply. In particular, let At(r × c) be the truncated
matrix that removed the rows or columns of A that contain just 0 (more specifically, r = c = min(n, m)).
Truncate xt ∈ Rc and wt ∈ Rr accordingly. Now At is invertible, so we can set x∗t = A−1

t wt and have
Lt = Atx∗t − wt := 0. The "leftover" dimensions of w cannot be captured by Ax and so characterize the
minimum value of ‖L‖.

More simply: we have differing numbers of equations and coordinates, but each equation we do have
says "coordinate i of your answer should be zi = wi/Ai,i". So you set your xi = zi for all the equations you
actually have, and that would minimize the error as much as you can using the information you have.

b. Now suppose we don’t have A diagonal, but we know its SVD: A = UΣVT . No problem! We can
write

Ax− w = UΣVTx− w = UΣVTx−UUTw = U(ΣVTx−UTw)

Then we can say

L = U(ΣVTx−UTw)

UT L = Σ(VTx)−UTw

where we’re now minimizing
∥∥UT L

∥∥, but since U is orthogonal,
∥∥UT L

∥∥ = ‖L‖. Using part (a), our
diagonal matrix A→ Σ, x → VTx, w→ UTw. So we have (x∗t = A−1

t wt)→ ((VTx)∗t = Σ−1
t UT

t wt). Finally,
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we can "unrotate" our optimal solution and get x∗t = VtΣ−1
t UT

t wt.

Note that (UtΣtVt)−1 = VtΣ−1
t UT

t , so we have that x∗t = A−1
t wt —we’re still essentially "inverting a

truncated version of A" to get our optimal solution.

Note: Rather than performing truncation, one could solve Part (a) and (b) by using the Moore-Penrose
pseudoinverse of A. But in most contexts, it’s computationally more feasible/convenient to truncate out
uninformative rows/columns to greatly reduce space-complexity.

c. Say we instead have (x1, y1), · · · , (xn, yn) ∈ R2 and we want to find a, b such that ∑n
i=1(axi + b− yi)
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is minimized. This is just a case of the above:

• m := 2, n := n

• x = [b, a].

• A =


1 x1
1 x2
...

...
1 xn

.

• w =
[
y1 · · · yn

]T ∈ Rn.

Technically one is minimizing ‖L‖2, but if you minimize ‖L‖ you’ve minimized ‖L‖2.

d. A simple extension of (c) can find the quadratic equation y = ax2 + bx + c of best fit.

• Now m = 3.

• Change x := [c, b, a].

• Change A =


1 x1 x2

1
1 x2 x2

2
...

...
...

1 xn x2
n

.

- 8/12/19
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3 Probability Theory and Stochastic Processes

3.1 Problem A-1
(f). We’re assuming the time it takes each of k = 3 clerks to service a customer follows an exponential dis-
tribution. They’re currently busy with customers and you’re the only person in line. Perhaps shockingly,
the probability you’re last to leave is 1/k – no worse than the other people who had been with clerks for
much longer by the time you get your turn!

This is due to the memoryless property of exponential distributions, namely that if X ∼ Exp(λ), then
Pr[X > (s + t) | X > t] = Pr[X > s] — the probability you’ll have to wait a duration of length s is the same
no matter how long you’ve waited before.

So, once you arrive at the clerk’s booth, there is symmetry between you and the other customers/clerks.
So by symmetry, the probability that you’re last to leave is the probability that Person 2 is last to leave, etc,
so Pr[you leave last] = 1/3.
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