
A zoo of matrix decompositions.

David G. Khachatrian

July 23, 2019

1 A zoo of matrix decompositions.

There are a great number of different decompositions of matrices that capture different aspects of the origi-
nal matrix. Without the proper background, they might seem esoteric. The hope here is to provide descrip-
tions that make some common decompositions more understandable and less daunting (or even worse –
unmotivated!).

2 First things first: Matrices are linear transformations on column vec-
tors.

An often-neglected point is that there’s actually a reason why matrix multiplication works in the way that it
does.

Let’s say we have some matrix T with r rows and d columns (so it is (r × d)). This matrix can only be
multiplied by a vector/matrix with d rows (so it has dimension, say, d× c). For now, let’s say it’s a vector x
with dimension d× 1. This would look something like

T =


t1,1 t1,2 · · · t1,d
t2,1 t2,2 · · ·

...
. . .

tr,1 tr,d

 =
[
t1 t2 · · · td

]
, x =


x1,1
x2,1

...
xd,1


So, what does Tx look like? The resulting matrix M (of shape (r× 1)) will have entries

Mi,1 =
d

∑
k=1

Ti,kxk,1

Let’s look at this same sum a different way – grouping together by the columns of T (i.e., grouping by
ti), and considering the entire column of output of M:

M1 =
d

∑
k=1

Tkxk,1

So what is the result? A linear combination of the columns of T, weighted by the corresponding entries
of x. What does it mean? Consider how x was originally described – in terms of some basis vectors ei:

~x = x1~e1 + x2~e2 + · · ·+ xd~ed

where ~x lives in Rd (it has d coordinates), and so each~ei is a column vector with zeros in every one of d
coordinates except at index i. Each xi~ei represents the value of x’s i’th coordinate.

What about afterward? The product M = Tx can be described by

Tx = x1~t1 + x2~t2 + · · ·+ xd~td

1



So we literally just “hot-swapped” the ei with ti, which is where ei lands if multiplied by T1. And in
general, matrix multiplication of x by a matrix T can be thought of as answering, “If I were to move ei to
Ti via a linear transformation, where would the i’th basis vector of x (say called ui) end up landing?” The
reason why the computation doesn’t really look that simple is because we end up converting the coordinates
now described with basis vectors T~u into the “standard basis vectors” ê (vectors that often correspond to,
e.g., the x, y, z axes – orthogonal, described by 1 alon gone coordinate and zeros everywhere else). The T~u
are often complicated in e coordinates – the columns of a matrix T usually aren’t just one 1 and a bunch of
zeros!

We consider this a linear transformation of x. And note that we may have changed where x “lives” – now
it’s described by a linear combination of ti, which live in Rr, so now Tx also lives in Rr (and it may be the
case that r 6= d). For matrix-matrix multiplication TK with more than one column, you basically perform
everything described above, just for each column of K.

An excellent, visual discussion of matrices as linear transformations (focusing on the case where r = d)
can be found here.

3 One more thing: Matrices described as row operations.

There’s another way of looking at what the entries of a matrix mean. It’s usually not as helpful, but it’ll be
relevant in understanding Gaussian elimination and LU decomposition.

For matrix multiplication Y = TB (T is r× d, B is d× c), let’s break down our matrices differently, this
time via the rows of B and Y:

T =


t1,1 t1,2 · · · t1,d
t2,1 t2,2 · · ·

...
. . .

tr,1 tr,d

 , B =


b1,1 b1,2 · · · b1,c
b2,1 b2,2 · · ·

...
. . .

bd,1 bd,c

 =


B1
B2
...

Bd



Y =


y1,1 y1,2 · · · yr,c
y2,1 y2,2 · · ·

...
. . .

yr,1 yr,c

 =


Y1
Y2
...

Yr


Now we can write the individual rows of Y as

Yi =
d

∑
k=1

ti,kBk

Notice the interesting reversal of roles here.

1. In our earlier interpretation, we would have said that the columns (d vectors of dimension r × 1) of
T (the left matrix) transform the basis vectors of each column (of original dimension d) of B (the right
matrix). This suggests a “right-to-left” approach to interpreting transformation on columns: T, a r× d
matrix, sends vectors in d dimensions to vectors in r dimensions.

2. In this second and entirely equivalent description, we have that the rows (d vectors of dimension c× 1)
of B (the right matrix) transform the basis vectors of each row (of original dimension d) of T (the left
matrix). This suggests a “left-to-right” approach to interpreting transformations on rows: B, a d× c
matrix, sends vectors in d dimensions to vectors in c dimensions.

While these two interpretations are both technically equally valid, the first method of interpretation
(focusing on columns and “right-to-left” interpretation) is far more common when discussing vectors in a
more “abstract” sense.

1This is the idea behind the matrix identity Id being a diagonal of ones – those are the standard basis vectors of Rd, and TId = T.

2

https://www.youtube.com/watch?v=kYB8IZa5AuE&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=3


3.1 The transpose operator.
On a related note: the above discussion suggests that M, an n × m matrix, “sends” column vectors of
dimension m to vectors of dimension n using M’s columns. What if we want to use M’s rows as a basis
(and we want to apply them to column vectors and still go “right-to-left”, rather than completely switching
perspective from (1) to (2))? This is what the seemingly innocuous transpose operation (T) does. By
flipping the indices for all entries of a matrix, MT(m× n) makes all the original row vectors of M(n×m)
into column vectors – which can now serve as the basis for an incoming vector in n dimensions. (This
interpretation can also help make sense of other properties of the transpose, e.g., (AB)T = BT AT .)

Though the second interpretation is rarely considered, the mechanics of looking at rows is useful in
at least one common scenario: solving a linear system of equations where each column represents the
coefficients of one particular variable. In this case, row operations represent manipulating the different
parts of the system of equations.

In particular, let’s make the following note about Tij in Y = TB. Tij answers the question: “How many
multiples of the j’th row of B should be in the i’th row of Y?”

4 Gaussian elimination as a form of LU decomposition.

Let’s consider a system of n equations with n unknowns and write the system in matrix form: Ax = b,
where each row of A has the n coefficients for the unknowns of one of the n equations.

In an introductory linear algebra course, you may have been instructed to perform Gaussian elimination
to solve such a system. Essentially, you try to turn A to In by performing certain row operations, and
whatever actions you did to A you also did to y. The row operations are usually described as three choices:

1. Multiply a row by a constant multiple.
2. Add a multiple of some row j to a row i.
3. Swap rows i and j.

Note that (1) is just (2) with j = i, so we really have two types of operations. The “swapping” operation
in this context is normally called “pivoting”.

Let’s also consider that if we have an upper diagonal matrix U for A, we can quite easily solve the
system of equations. This would correspond to a system like:

3x + 2y −z = 3
0x− y +3z = 2
0x + 0y +5z = 10

Not exactly hard to solve for z in the last equation and then walk your way “back” up. Solving a system
of equations associated with an upper-diagonal matrix in this way is called back subsitution (you’re going
“back” toward the top). An analogous method exists for lower-diagonal matrices, starting from the first
equation and walking “forward” through the equations – this method is called forward subsitution.

Now this is where our observation about rows comes back into place! In fact, every one of these row
operations can be described by a matrix! For example, swapping the first and second rows of a 3x3 set of

equations can be written as P1 =

0 1 0
1 0 0
0 0 1

, and subtracting two multiples of the first row to the third row

can be written as S2 =

 1 0 0
0 1 0
−2 0 1

.

If we only ever modify “lower” rows with multiples of “upper” rows and never need to swap rows to
get A to be upper-diagonal U, we can fully describe a Gaussian elimination as a bunch of lower-diagonal
matrices L1, L2, · · · – which, when multiplied together, happen to be lower-diagonal! This would decompose
A such that A = LU. Once we have this expression, we can easily solve Ax = b for any b:

3



1. Decompose A = LU.
2. Solve y = Ux for x (via forward substitution).
3. Solve L(Ux) = Ly = b for y (via back substitution).

Now of course, we normally aren’t so lucky to not have to swap rows. But we can get the appropriate
pivot matrix P (“row-swapper”) and have PA = LU. Then all that changes is a few swaps: Pb = PAx =
LUx.

So there’s nothing super esoteric about LU decomposition – it’s just Gaussian elimination!
For more specifics about algorithm implementation, one can check out the Wikipedia entry.

5 Symmetric positive-definite matrices: Definitely our favorite kinds
of matrices.

Now, there’s a subset of matrices of particular interest2: symmetric matrices A such that xT Ax = 〈x, Ax〉 >
0 for all x 6= 0. Such matrices are called (symmetric) positive-definite.

This definition is a bit suggestive – what other function is positive for all nonzero y? One answer is
〈y, y〉 = ‖y‖2

2, the squared norm of the vector y.
Hmm. . . The quadratic form is so very close to describing a norm. Maybe we could decompose A = KTK

for some K – then we could write xT Ax = xT(KTK)x = (Kx)T(Kx) = ‖Kx‖2, which is clearly positive for
nonzero Kx (and so for nonzero x if K is full-rank). Can we find such a K? (Spoilers: we can!)

Before that though, a tidbit that may help make sense of positive-definite matrices. The covariance matrix
Σ of a vector-valued random variable ~θ is always positive semidefinite, and is positive definite assuming
there are no perfect collinearities between coordinates (e.g. θ1 + θ2 = c – this is to ensure Σ is full-rank).

Perhaps even more suggestively, let us say X is an n× p data matrix consisting of n observations of a
random variable with p features/parameters. Let Xc be the centered version of this data (i.e., each column
(representing a coordinate) is centered around zero). Then we can described the covariance matrix of X as
Σ = X̃T

c X̃c (where X̃ = 1√
n−1

X).
This fits exactly the type of decomposition we want! Does it hold in general for any symmetric positive-

definite matrix?

6 The Cholesky Decomposition: Fancy (and really convenient) Gaus-
sian elimination.

Turns out, the answer is yes!
In particular, one can perform a variant of Gaussian elimination and end up with A = LU = LLT .

In particular, the idea is that “any Gaussian-elimination row operation Li you perform to the left of A,
you perform analogously”from the right" with LT

i “. This hearkens back to the idea of the transpose op-
erator”interfacing" between row-vector and column-vector interpretations of matrix multiplication, while
using the symmetry of the matrix A.

6.1 Covariances, Mercer’s Theorem, the kernel trick.
A related fun fact: every positive semidefinite matrix describes a covariance matrix and vice-versa. This is
an implication of Mercer’s theorem and is usually invoked to explain why the kernel trick works. Essen-
tially, the kernel trick involves reframing an objective function in terms of a measure of similarity between
two vectors via an inner product

〈
x(i), x(j)

〉
. Now, if we define a kernel function K(xi, xj) that describes

2Technically, this is more accurately described as “matrix representations of specific types of quadratic forms”. More on quadratic
forms here.

4

https://en.wikipedia.org/wiki/LU_decomposition#Crout_and_LUP_algorithms
https://en.wikipedia.org/wiki/Mercer%27s_theorem
https://en.wikipedia.org/wiki/Kernel_method
http://www.its.caltech.edu/~kcborder/Notes/QuadraticForms.pdf


the similarity between two points and replace our inner product with our kernel function – voila, we’ve
changed mapped x into a new feature space!

How did that happen?
By definition, the output of the kernel function K must form a positive (semi)-definite matrix Σn for any set

of points {x(1), x(2), · · · x(n)}. So the kernel function is essentially an uncountably infinite-dimensional analog
to a covariance matrix3. In most practical settings, you could explicitly create the implied covariance of your
data Σn – which we just said can be decomposed to LLT . So in a way, instead of calculating the inner
product in the original space via

〈
x(i), x(j)

〉
, we’re transforming x → LTx and taking its inner product〈

LTx(i), LTx(j)
〉

instead. By specifying K, we implicitly specify a Σn and therefore a LT for our data.
This cascade of implications (hopefully) intuitively make sense in words – by specifying how “close”

two datapoints are (K), we’re implicitly describing how to quantify their “difference”/“variance” (Σn),
which would have to be describable by features of the datapoints (LT).

[gaussian_process]: This is kind of like “the Gaussian process of positive semi-definite matrices”. In a Gaus-
sian process, any finite subset of points must be describable as a multivariate Gaussian distribution. A
good reference is here. (Note that the Gaussian process itself requires a kernel function, so the connection I
described is a bit recursive – but hopefully it makes sense if one already knows about Gaussian processes.)

6.2 Cholesky decomposition and simulation convenience.
A commonly lauded practical use of the Cholesky decomposition is that it can be used to make a set of
random variables have a specific covariance matrix. How?

For convenience, say our “starting” column vector u ∈ Rd which has covariance matrix Σ1 = Id. Our
goal is to have a transformed u T(u) so that it has covariance Σ.

Well, using Cholesky decomposition, we have Σ = LLT . And by the Delta Method4, we have that the
covariance matrix of Lu is Σ′ = ∇u(Lu)TΣ1∇u(Lu) = LΣ1LT = LLT = Σ. So left-multiply u by L and
you’re done. Nice and easy!

7 The Gram-Schmidt Process as QR decomposition.

Let’s remember the Gram-Schmidt process. It’s meant to turn an input set of vectors v a set of orthonormal
vectors q that span the same subspace. It basically works recursively:

1. For i = 1, define q1 = v1/‖v1‖.
2. Define the i’th basis vector qi as vi with all the previously defined basis vectors subtracted out: qi ∝

vi −∑j<i
〈
qj, vi, q

〉
j. Normalize qi to be of unit length.

Perform this process on a matrix A, storing qi into the i’th column of Q and the values of
〈
qj, vi

〉
in Rj,i,

and bam – there’s your QR decomposition! (The goal of this decomposition is to have an orthogonal matrix
Q and a right-diagonal matrix R.)

(Worth noting: The Gram-Schmidt process, while geometrically pleasing and intuitive, is not the most
numerically stable way to decompose a matrix. Take a look at the Wikipedia entry for more details.)

8 Singular-value decomposition and eigendecomposition.

Here I’ll quote from when I described SVD as it compares to UV factorization (used in the problem of
collaborative filtering, e.g. for a recommendation algorithm).

3This is kind of like "the Gaussian process of positive semi-definite matrices". In a Gaussian process, any finite subset of points must
be describable as a multivariate Gaussian distribution. A good reference is here. (Note that the Gaussian process itself requires a
kernel function, so the connection I described is a bit recursive – but hopefully it makes sense if one already knows about Gaussian
processes.)

4Why does the Delta Method apply? It applies for any function of a consistent estimator approaching some other function in

distribution. (Some good notes available here.) And surely, u
(d)−−−→

n→∞
u. We then take g(u) = Lu.

5

http://cs229.stanford.edu/section/cs229-gaussian_processes.pdf
https://en.wikipedia.org/wiki/QR_decomposition#Relation_to_RQ_decomposition
http://cs229.stanford.edu/section/cs229-gaussian_processes.pdf
http://personal.psu.edu/drh20/asymp/fall2006/lectures/ANGELchpt05.pdf


8.1 Quoting myself. . .

The thought process behind this matrix factorization of X into U and VT is probably one of the clearest
explanations I’ve seen for what the components of singular value decomposition (SVD) are. There are just
a few differences between what we discussed in lecture and how SVD works:

1. In lecture, we assumed the n×m matrix X to be of some specific rank k. In SVD, we don’t explicitly
make that assumption (though we still have a way of determining the relative importance via the
singular values – more on that in a second).

2. In lecture, the professor mentioned how U and VT can vary by scaling when writing X = UVT . In
SVD, we “capture” all of the scaling into a diagonal matrix Σ by writing X = UΣVT . The entries of
Σ are the singular values, that describe the “strength of association” between the relevant entries in U
and VT . Small singular values mean that the association between the two are nearly non-existent –
singular values equal to zero mean that X is not full-rank.

Besides that, it’s basically as was described in lecture, and the intuitive explanation given by the example
was great! Recapitulating for the most part: If Xai is what person a thought about movie i and we want to
describe things with k “concepts”, then

• the a’th row of U(n× k) describes Person a’s relative affinity for k unknown/“latent” concepts, and
• the i’th column of VT(k×m) describes how relevant these k latent concepts are to movie i.
• When using SVD, the Σj,j entry of the matrix Σ describes: if Person a likes concept j and Movie i is

highly relevant to concept j, how much effect does that actually have on the final rating Xai?

Technically, what’s described above is a truncated SVD. The full SVD is slightly hairier (and this extra
hairiness is probably what makes SVD feel so opaque). For “full” SVD, you need to have Σ be an n ×
m rectangular-diagonal matrix, and U and VT change shape accordingly (and be made orthogonal/unitary
matrices U(n × n) and VT(m × m) – i.e., again, making sure Σ captures all of the scaling). Why? The
number of nonzero entries in Σ is the rank of X, which is between 0 and min(n, m), so this ensures you’re
“safe” regardless of the rank of X.

But if you know the rank of X to be k – or want the matrix of rank-k that is “close” of X – then you can

1. do the truncated SVD with Σ as a k× k matrix and (appropriate shapes for U and VT), as described
above. When the rank of X is in fact ≤ k, this gives the “same” result as full SVD. When rank(X) > k,
I believe this gives the “closest” rank-k matrix to X, but it does so by “mixing in” the less important
“concepts” into the k concepts we have kept. Or;

2. do the full SVD, reorder the matrices so that the largest k singular values are at the top, and drop the
rest of the rows/columns. This may be slightly less “close” compared to (1), but it doesn’t perform
any “extra” mixing like (1) does.

Which one you prefer would probably depend on the sizes of n, m, and k.

7/14/19 UPDATE
The good point made by @khanhedx in their response made me want to emphasize something:
SVD only works on matrices with filled-in data. Trying to perform SVD on Y directly (which is mostly

filled with unknown entries) will cause errors or give erroneous results (if your marker for “unknown data”
is a number, e.g., −1).

Also, different assumptions are made when imputing X via truncated SVD (X = UΣVT , rows of U and
columns of VT have unit norm) compared to X = UVT . In SVD, as mentioned before, all scaling is captured
by Σ and shared across all rows of U (people) and columns of VT (movies), which all have unit norm. What
this means is, for example, there is no way for an X factorized according to the truncated SVD to capture
the idea that, say, “Person a rates all types of movies more highly in general compared to Customer b”
(mathematically, Uaj > Ubj, j ∈ {1, 2, · · · , k}).

6

https://en.wikipedia.org/wiki/Singular_value_decomposition


One could regain this capability by relaxing the restriction of unit norms – at which point you can drop
Σ altogether and recover the matrix factorization X = UVT discussed in lecture. Or you could perhaps
keep Σ and play with regularization terms to allow but punish deviations of U and VT from unit norm
(“you’re allowed to say that some users just like all movies more than others, but I don’t want you to use
that reason willy-nilly”).

The proposed changes to the objective function above suggest different assumptions about how you
expect the data to be structured and/or how you want the data to be described. This should be a good
reminder of just how important it is to specify your objective function properly.

8.2 Some extra points.
A few points to make after that to round things off.

First, eigendecomposition and SVD are very closely linked. If X is a square matrix, then the singular-
value decomposition is the eigendecomposition of X. But even in the non-square case, the SVD contains a
lot of interesting information. Take X = UΣVT , and recall that U and V are both orthogonal matrices and
that orthogonal matrices K satisfy KT = K−1. Then:

1. XTX = (UΣVT)T(UΣVT) = (VΣTUT)(UΣVT) = V(ΣTΣ)VT is the eigendecomposition of XTX. So
V describes the eigenvectors of XTX and ΣTΣ hold the eigenvalues.

2. XXT = (UΣVT)(UΣVT)T = (UΣVT)(VΣTUT) = (UΣΣTUT) is the eigendecomposition of XXT . So
U describes the eigenvectors of XXT and ΣΣT hold the eigenvalues.

(Note that the nonzero values of ΣTΣ and ΣΣT are the same – one of the matrices just have more dimen-
sions and zeros.)

Finally, a generalization and a gripe: the general form of an eigendecomposition may not have orthog-
onal eigenvectors but may still have an eigendecomposition X = VΛV−1 if X is full-rank. And technically,
since SVD always deals with orthogonal matrices, we can write X = UΣV−1. Personally, I feel the inverse
operator (V−1 means “do the operation that exactly counteracts V”) is more intuitive to grasp/visualize
than the transpose operator. Hopefully, this makes it a bit easier to sound out what “actions” a vector v hit
by X undergoes, going right-to-left (we’ll talk through eigendecomposition first):

1. First, we align v to have coordinates along the eigenvectors through V−1 (remember, this “undoes”
the usual V, which would map the basis vectors to the eigenvectors – here, we map the eigenvectors
to the basis vectors).

2. Next, we stretch along the axes according to how X would stretch the basis vectors via Λ.
3. Finally, we realign v to the proper output space with V.

An analogous description can be made for SVD, except it might feel slightly “weirder” because our
output space may be different from our input space. But recall the discussion above: the idea is that there’s
a “true” space in which the vectors reside where all coordinates are orthogonal to each other, and the two
other matrices are alternate “views” of the “true” vector in different coordinate systems (and potentially
different dimension).

9 Jeez, tl;dr!

Alright, so this was longer than expected. But there’s a reason for the length!

1. We explain how matrices are linear transformations. We highlight both the usual “right-to-left column-
vector basis” interpretation as well as the more rarely used “left-to-right row vector basis” interpreta-
tion (which is useful for understanding LU decomposition).

1. At this point, we described what the transpose operator actually “means” conceptually – letting
our row-vectors serve as a basis while still doing multiplication right-to-left.

2. We discuss how LU decomposition is essentially Gaussian elimination (making sense of the matrices
using the “row-vector” interpretation).

7



3. We discuss how the Cholesky decomposition is essentially Gaussian elimination with a clever trick
that uses information about A being symmetric positive-definite.

1. While there, we discuss the connections among covariance matrices, symmetric positive-definite
matrices, and kernel functions.

2. We also describe why a common practical use of Cholesky decomposition – covariance modeling
– works.

4. We discuss how QR decomposition can be thought of as just the Gram-Schmidt process described as
matrices.

5. We discuss how SVD involves describing the “latent” subspace on which the column-vectors of a
matrix reside. We then map an input into this space, stretch along the axes, then map it to its output
space.

1. We also discuss the connections between SVD and eigendecomposition – how the U and V in
SVD for X show up as the matrix of eigenvectors in the eigendecompositions of XXT and XTX,
respectively.

It took a while to do all that discussing! But hopefully the post was not too prolix5, and the read is worth
the time and effort.

- DK

5Anything for alliteration.

8


	A zoo of matrix decompositions.
	First things first: Matrices are linear transformations on column vectors.
	One more thing: Matrices described as row operations.
	The transpose operator.

	Gaussian elimination as a form of LU decomposition.
	Symmetric positive-definite matrices: Definitely our favorite kinds of matrices.
	The Cholesky Decomposition: Fancy (and really convenient) Gaussian elimination.
	Covariances, Mercer's Theorem, the kernel trick.
	Cholesky decomposition and simulation convenience.

	The Gram-Schmidt Process as QR decomposition.
	Singular-value decomposition and eigendecomposition.
	Quoting myself…
	Some extra points.

	Jeez, tl;dr!

